Modeling Cognitive Processes for C⁴ISR and IW

Chris Elsaesser

(chris@ai.mitre.org)

February 27,1996

Why Model Cognitive Processes?

- Account for the human element
- → Simulation outcome should reflect commander's influence
- → Commander's influence on outcome determined by his decisions
- → Need to simulate decision making behavior
- → Cognitive process models are a <u>means</u> to the end of simulating behavior

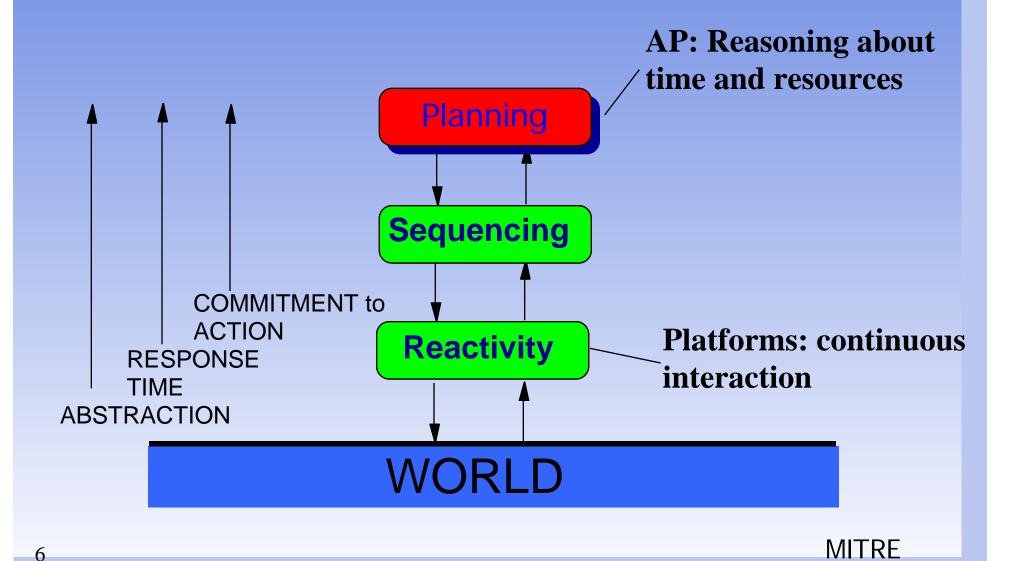
Modeling Decision Making Behavior: Two Approaches

- Process models
 - Detailed models of human information processing
 - Decisions emerge from the process
- Commonly used in research on human problem solving

- Normative + Error
 - Models how and when behavior deviates from normative solution
 - Possible decisions are enumerated first
- Commonly used for research on judgment & decision making

Conclusions

- It is possible to simulate C² decision making behavior without simulating human decision making processes
- It is also preferable
 - Simulations should be able to generate doctrinally correct and reasonable intelligence assessments and plans (i.e., <u>normative</u> judgments and decisions)
 - ⇒Only need to model the "+ error"


Simulating C² Decision Making Behavior: Adversarial Planner

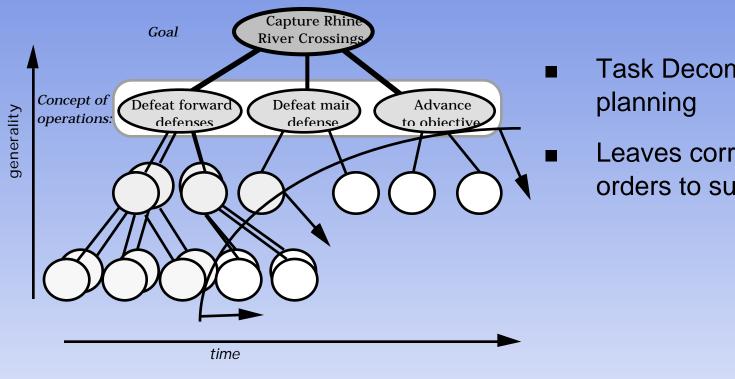
- **■** Functionality
 - Multi-agent planning
 - Counterplanning
 - Execution monitoring
 - Replanning when (not if) things go awry

Uses

- Simulating one level of command
- Decision aids

Level of Decision Representation

Representing Battle State


Perception of the world stated as propositional fluents:

(holds (in-range ?agent ?objective) <situation>)

- States represented by a sets of propositions
- Operators change some propositions, resulting in a new *predicted* situation

Representing a Friendly Plan

- Task Decomposition
 - Leaves correspond to orders to subordinates

Start executing when there is not enough information to plan later phases in detail

Counterplanning: Representing Enemy Objectives

- Generate friendly initial plan
- Hypothesize enemy plans that could prevent successful execution
- Incorporate plan fragments that fit with current plan and *prevent* enemy's counterplan

In effect, enumerates reasonable options for both sides

Execution Monitoring: Assessing Current & Future Status

- Update PERCEIVED-SITUATION with reports from agents
- When an operation completes:
 - Project effects through future situations
 - Check if OK to start pending operations
- Trigger replanning when current action does, or future action is predicted to fail

MITRE

Perceived Situation

Dynamic Decision Making

- Dynamic, uncertain domains require capability for plan repair
 - To achieve the original goal by alternate means
 - Without changing the plan so drastically as to waste preparations (maintain momentum)

"Yes, [war is] choreographed, and what happens is the orchestra starts playing and some son of a bitch climbs out of the orchestra pit with a bayonet and starts chasing you around the stage. And the choreography goes right out the window."

- Norman Schwarzkopf

An Instantiation for Information Warfare

- AP generates alternative COAs
- Plan evaluation --> Probability of success for each plan
 - Normative, based on what we plan to do
 - Identify information from state description necessary to assess particular probabilities
- Error sources
 - Missing or distorted information
 - Cognitive biases

Modeling Information Error

- Go from info used to assess true probability of success to incorrect assessment (by enemy) of perceived probability of success
 - Delay
 - Distort
 - False info
- Can model effects on information without modeling cognitive errors, biases, etc.

Modeling Cognitive Error

- Initial judgment: Broken leg cue
 - Overvalue "telling indicators"
 - Plan observable event normally associated with (wrong) COA
- Delaying replanning: Confirmation bias
 - Information counter to previous assessment devalued
 - Information confirming previous assessment overvalued

Acknowledgments

- Sponsors, past and present
 - D/ARPA
 - CECOM
 - NASA
 - STRICOM
 - U.S. Army National Simulation Center
 - Defense Information Systems Agency
- Paul Lehner & Marc Slack